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Shear-free turbulence near a wall
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The mean shear has a major influence on near-wall turbulence but there are also
other important physical processes at work in the turbulence/wall interaction. In
order to isolate these, a shear-free boundary layer was studied experimentally. The
desired flow conditions were realized by generating decaying grid turbulence with a
uniform mean velocity and passing it over a wall moving with the stream speed. It
is shown that the initial response of the turbulence field can be well described by
the theory of Hunt & Graham (1978). Later, where this theory ceases to give an
accurate description, terms of the Reynolds stress transport (RST) equations were
measured or estimated by balancing the equations. An important finding is that two
different length scales are associated with the near-wall damping of the Reynolds
stresses. The wall-normal velocity component is damped over a region extending
roughly one macroscale out from the wall. The pressure–strain redistribution that
normally would result from the Reynolds stress anisotropy in this region was found
to be completely inhibited by the near-wall influence. In a thin region close to the wall
the pressure–reflection effects were found to give a pressure–strain that has an effect
opposite to the normally expected isotropization. This behaviour is not captured by
current models.

1. Introduction
In the computation of turbulent flows with engineering turbulence models there are

a number of factors that determine the accuracy of the predictions. The numerical
aspects are many and complex, e.g. choice of numerical solution algorithms and
grid independence checks. Single-point closures of turbulence are often developed
by validation against homogeneous turbulent flows. This is, to some extent, a
reasonable approach and gives at least a platform to work from. One of the major
obstacles though in obtaining an increased generality of the models is the treatment
of near-wall effects and the choice of wall boundary conditions. Various types of wall-
damping functions for different terms and ‘low Reynolds number formulations’ of the
equations have been proposed. Modern advanced models that ensure realizability in
the two-component limit constitute approaches that reduce the need for wall-damping
functions at least to some extent. The two-component limit is approached near a solid
wall, where the wall-normal component of the Reynolds stress vanishes more rapidly
than the tangential ones. The presence of the wall is felt in several ways. The no-slip
condition together with the mixing effect of the turbulence gives a thin region of
strong mean shear in the boundary layer. Also, appreciable second-order derivatives
of the mean velocity profile are restricted to a thin region close to the wall.
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Regardless of the mean shear, the wall has a strong influence on the flow field.
In the present paper we will investigate the wall influence on the turbulence field in
the vicinity of a solid wall in the absence of mean shear. In this situation we have
the influence of wall pressure reflection effects and viscous damping of the velocity
fluctuations due to the no-slip condition.

When a solid wall is suddenly introduced into an initially isotropic turbulence field,
or when isotropic turbulence passes with a uniform mean velocity over a solid wall
that moves with the same velocity, multiple effects are introduced. Inhomogeneity in
the turbulence statistics in the wall-normal direction is produced, while the isotropy
in the wall-parallel plane is retained.

The first experimental study of this flow situation was carried out by Uzkan &
Reynolds (1967), who conducted an experiment in a water tunnel for a mesh-size
Reynolds number of ReM = 5000 (turbulence Reynolds number ReT ≡ k2/νε ≈ 90).
Distributions of the streamwise turbulence intensity were determined at a number of
streamwise locations. These were found to collapse when normalizing the distance
from the wall with a viscous length scale. Thomas & Hancock (1977) conducted a
similar experiment in a wind tunnel at a much higher Reynolds number, ReM =
105 (ReT ≈ 2000). These measurements were more detailed and included all the
turbulence intensities. It is generally agreed that the main effect of the wall is the
production of a ‘splashing effect’ near the wall, dominated by a transfer of energy
from the wall-normal component to the wall-parallel ones. The results of Thomas &
Hancock show, in contrast to the Uzkan & Reynolds results, but perhaps in intuitive
agreement with the above notion, a distribution of the streamwise turbulence intensity
with a peak substantially higher than the free-stream value. However, it is noteworthy
in the Thomas & Hancock measurements that the spanwise intensity did not exhibit
the peak found in the streamwise component. Hunt & Graham (1978) addressed these
wall effects theoretically and attempted to reconcile the differences between the two
aforementioned measurements. Brumley (1984) reviewed experiments on turbulence
generated by e.g. an oscillating grid near a shear-free boundary. This case has definite
similarities with the one considered here, although in the former the boundary is a
fluid–air interface, which can be regarded as an inviscid boundary, in contrast to a
solid wall. The lack of viscous damping of the velocity fluctuations lends a distinctly
different character to the flow near an inviscid boundary.

An early numerical simulation of turbulence above a solid wall without mean
shear was carried out by Biringen & Reynolds (1981) who used a large-eddy sim-
ulation method. Although these calculations were quite limited by grid resolu-
tion, the results agreed qualitatively with those of Uzkan & Reynolds (1967). Re-
cently Perot & Moin (1995) reported an extensive DNS study of shear-free turbulent
boundary layers. The influence of a wall was analysed by considering various fun-
damental types of boundaries, such as an idealized permeable wall, an idealized
free surface and a solid wall, thereby isolating viscous and inviscid mechanisms.
The relative importance of dissipation, inter-component energy transfer and en-
ergy transport was indicated from distributions of Reynolds stresses and the bud-
get of the Reynolds stress transport (RST) equations. They also tried to relate
the variation of the inter-component transfer to changes in the character of the
turbulence structures as the wall is approached. Perot & Moin (1995) found no
persisting near-wall peak in the streamwise Reynolds stress, i.e. contrary to the
findings of Thomas & Hancock (1977). The work by Uzkan & Reynolds (1967),
Thomas & Hancock (1977), Hunt & Graham (1978) and Perot & Moin (1995) has
shown that the physical effects of a wall on the turbulence field are extremely com-
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plicated even in the absence of mean shear. A scenario has been suggested whereby
wall blocking effects amplify tangential intensities while viscous effects damp them.
In homogeneous flows the energy transfer is commonly associated with the pressure–
strain rate term, although also anisotropic dissipation can play a significant role. For
inhomogeneous flows diffusion may also have a profound influence on the energy
redistribution.

The present results demonstrate that in a thin region near the wall the pressure–
strain has an effect opposite to that of the normally expected isotropization. Here,
due to the presence of the wall, it transfers energy from the ‘poor’ wall-normal
component to the ‘rich’ lateral ones. The results also show, in agreement with the
DNS results of Perot & Moin (1995) and in contrast to the earlier experimental results
of Thomas & Hancock (1977), that viscous diffusion and dissipation counteract the
effects of energy transfer to the lateral components to a degree so as to give intensity
distributions without significant near-wall peaks.

The objective of the present study is to improve the understanding of the physics
involved in the interaction of turbulence with solid walls. This is accomplished with
an experimental investigation of decaying grid-generated turbulence passing over a
flat solid surface moving with the mean velocity of the fluid. Effects of mean shear
are thereby excluded. Particular attention has been paid to the construction of the
experimental facility in order to minimize the mean velocity gradient and to ensure
a good uniformity of the turbulence statistics. Hot-wire anemometry is used to
determine quantities of interest for modelling the RST equations and their near-wall
behaviour. Existing models of wall-reflection terms for the pressure–strain rate and
the treatment of the near-wall behaviour of the diffusion and dissipation terms are
discussed.

2. Experimental apparatus and procedure
The experimental realization of decaying turbulence near a solid boundary without

mean flow inhomogeneities is accomplished by passing grid-generated turbulence over
a wall moving with the stream speed (see 1 in figure 1). The wind tunnel used is
a low-speed closed-circuit tunnel with a test section of 1.25 × 1.80 × 2.90 m3 and a
contraction ratio of 6.2. The tunnel is equipped with a cooling system capable of
keeping the temperature variations of the moving fluid to less than 1◦C during the
measurements. The free-stream velocity, U∞, and hence the moving wall velocity,
were 5 m s−1 in all experiments reported here.

A major difficulty in this experimental realization is to introduce the moving wall
without creating significant disturbances. Typical sources of disturbances are the
influences of wind-tunnel wall boundary layers, the effects of incorrectly balanced
velocity distributions of the suction channels used to remove the wind-tunnel wall
boundary layer, and ‘buoyancy’ effects caused by frictional heating at the boundary
between the moving belt and the backing plate. In a shear-free boundary layer
such disturbances can be particularly severe since the mean shear and the associated
turbulence production, which otherwise quickly would reorganize the turbulence, are
absent and any initial disturbance would propagate a long distance downstream.

2.1. Moving wall

The floor of the working section was replaced by an endless belt mechanism in order
to match the wall and the free-stream velocities. Figure 1 shows a sketch of the
complete moving belt arrangements. The belt dimension was 0.002 × 0.98 × 4.17 m3
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Figure 1. Schematic diagram of the wind tunnel, turbulence generation grid and moving wall
arrangement. Grid mesh width is 80 mm and distance between moving and top walls is 1.08 m.
Length of the moving wall section is 1.7 m. 1–6 are described in the text.

and covered the full width of the working section. In the present experiments the
length of this section corresponds to approximately one and a half eddy turnover
distances

(
U∞ko/εo

)
, where ko and εo are the turbulent kinetic energy and dissipation

rate at the beginning of the moving wall. As shown in the figure, the belt runs over
three circular cylinders of 150 mm diameter, and a pneumatic device (6 in figure 1) was
used to control and adjust the lateral position of the belt. Any movement sideways
was detected by a sensor, and a deviation from the nominal value was immediately
counteracted by displacing one of the two end supports of the lower cylinder. When
performing hot-wire measurements close to a surface, no vertical motion or vibrations
of the belt can be accepted. These were eliminated by a smooth backing-plate in
combination with a high tension of the belt. To prevent any buoyancy effects caused
by frictional heating at the boundary between the belt and the backing-plate, the
latter was water cooled. Tests showed that a temperature variation of less than
±0.5◦C was obtained during the measurements. The belt was driven by an electrical
motor (5 in figure 1), which was connected to a frequency converter so the rotational
speed could be adjusted continuously between zero and the maximum speed. During
all measurements the speed of the belt was checked by focusing a stroboscope on a
scale on the belt.

A major difficulty in forming a shear-free boundary layer is the elimination of the
wall boundary layer formed in the contraction part of the wind tunnel. One method
typically used is to employ suction through a porous wall. An alternative approach
is to remove the tunnel boundary layer through a duct with suction, i.e. ‘shave off’
the boundary layer by a reduction of the tunnel cross-section. The latter method was
used in this work. To make the wall boundary layer removal smooth, the reduction
of the tunnel cross-section was made in two steps and the oncoming flow towards
the moving belt was controlled by a leading edge (2 in figure 1). Here, the length of
this leading edge was determined as a compromise between the desire to minimize
the upstream disturbances on the belt (i.e. a short leading edge) and the need for
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an appropriate curvature around the upstream roller (i.e. a certain minimum length).
Moreover, to prevent fluid from being advected by the belt over the first roller into
the tunnel, the size of the gap between the suction box and the first roller (3) was
minimized and a small suction applied. The flow balance of the wind tunnel was
maintained by recirculating (4a, 4b in figure 1) all of the evacuated air into the tunnel
as shown in figure 1.

2.2. Measurement procedure

The turbulence measurements were made using a constant-temperature anemometer
and standard Dantec miniature hot wires, single as well as cross wires, made of
tungsten and with an active length of 1.25 mm and a diameter of 5 µm. A computerized
traversing mechanism attached to the upper wall of the wind tunnel allowed the probes
to be moved in the streamwise and normal directions. For all the data acquisition
a Macintosh-based computer system was used. A look-up table was used to relate
voltages to velocities for the X-wire probes, see Lueptow, Breuer & Haritonidis (1988),
and the single wires were calibrated directly using the transfer function suggested by
Collis & Williams (1959).

A key feature of this experiment was the ability to measure accurately and with
good resolution the fluctuating velocity gradients forming the dissipation rate tensor.
For a proper determination of these gradients it is important to assess the spatial
filtering arising from the finite length of the wires and from the finite separation
of multiple wires. For velocity measurements, these effects have been analysed by
Wyngaard (1968), Ligrani & Bradshaw (1987) and Browne, Antonia & Shah (1988).
Wyngaard (1968) made a theoretical study of how finite wire length influences the
measured spectra, and concluded that the spatial dimensions of the probe should

be of the order of the Kolmogorov microscale, η =
(
ν3/ε

)1/4
, to minimize the

effects of spatial filtering. Wires of large L/η, where L is the length of the hot
wire, give errors due to their lack of spatial resolution of the fine scales of the flow
resulting in an attenuation of the high frequencies. From an experimental investigation
Ligrani & Bradshaw (1987) found an optimal sensor performance is obtained using
L/η = 1.6 and L/d = 260. Wires of small L/d give errors due to end conduction
effects, resulting in an attenuation of the measured intensities. Browne et al. (1988)

studied the influence of wire spacing of X-probes in obtaining u2
1, u

2
2 and u1u2. Their

experiments were conducted in the far wake of a circular cylinder. In order to limit the
error due to wire spacing to no more than 4% as compared to the value measured by
a single hot wire, they found that the wire spacing not should exceed approximately
3η, provided L/d = 150 and L/η = 1.7.

The effects of wire spacing, i.e. spatial filtering, on the measurements of the variance
of ∂u1/∂x2 have been analysed by e.g. Wyngaard (1969), Ewing & George (1994) and
Antonia & Mi (1993). These papers suggested a separation between the hot wires in
the range of 2η–4η.

Figure 2 shows the measured value of the velocity derivative moments
(
∂u1/∂xi

)2
,

approximated by
(
∆u1/∆xi

)2
, as a function of wire separation. Theoretically, this

estimate becomes more accurate as ∆xi → 0, but as the wire separation decreases,
the relative error of ∆xi increases, and errors associated with the resolution of the
A/D-converter and noise contamination from the anemometer and other parts of
the electronic system will also become significant, giving a systematic increase of(
∂u1/∂xi

)2
as the wire separation decreases (figure 2). Also noteworthy is that this
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Figure 2. Effect of wire spacing on the measurement of the variance of ∂u1/∂xi.
◦, i = 1; 2, i = 2; �, i = 3.

effect is more accentuated for measurements of the cross-stream derivative moments.
On the other hand, if the separation between the wires is too large, the small scales

will not be resolved yielding too small a value of
(
∂u1/∂xi

)2
. As pointed out by

several investigators, the measured velocity derivative variance closely adheres to the
following expression in an intermediate region:(

∂u1

∂xi

)2

M

=

(
∂u1

∂xi

)2
(

1 + C

(
∆xi
λ

)2
)

(2.1)

where λ is an appropriate Taylor microscale and C is a constant expected to be of
order unity.

Using this relation we can obtain the desired velocity derivatives from an extrap-
olation of measurements within this region. For the cross-stream derivatives wire
separations ∆xi/η of 2.0 and 2.6 were used, and the length of the wires was 1.8η.

Other possible sources of error in derivative measurements are the drift in the
calibration of one wire relative to the other and the temperature–wake interaction.
To determine the former we repeatedly returned to a reference position during the
series of measurements in order to determine the same derivatives. No significant
deviations were noted. The wake interaction is more accentuated for cross- than for
parallel-wires, and since comparatively large probes were used this source of error
was judged to be negligible.

3. The grid-generated turbulence
The homogeneous isotropic flow field was generated by passing the undisturbed

flow through a grid. The choice of dimensions for the grid is governed by a number of
different (and partially opposing) criteria (various experimental aspects of turbulence-
generating grids are discussed by e.g. Corrsin 1963). A small mesh width is desirable
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Figure 3. Downstream distribution of anisotropy with the grid located in the contraction part of
the wind tunnel. ◦, i = 2; 2, i = 3.

from the view point of obtaining a large number of eddy turnover times during the
passage of the turbulence over the moving wall. For homogeneity reasons the ratio of
the mesh width to wind tunnel height should at least be smaller than 0.1 (see Roach
1987), and spatial resolution requirements call for a large mesh size in order to fulfil
the above discussed requirements for the ratio of hot-wire length to Kolmogorov
scale.

For the present purposes it is important that the grid is a monoplane one since oth-
erwise substantial anisotropies will occur, see Groth, Hallbäck & Johansson (1989).
The grid was accurately manufactured from aluminium pipes of square cross-section
(side 15 mm) to give a mesh size of 80(±0.05) mm, and a solidity (projected solid to
total area) of 0.34. Optimum experimental conditions with the moving belt described
in §2.1 were obtained with a wall velocity of 5 m s−1 giving a mesh Reynolds number
of about 1.6× 104.

It was found in initial experiments that, with the grid positioned in the beginning

of the test section, the ratio u2
1/u

2
2 attains a value of about 1.2 at the position of the

moving wall. This value is fully in accordance with what has been found in numerous
investigations, see e.g. Comte-Bellot & Corrsin (1966). They made use of the well-
known fact that a contraction reduces the relative streamwise intensity to a larger
degree than the lateral ones and achieved a practically isotropic turbulence by use of
a contraction with an area ratio of 1.3 some distance downstream of the grid. We here
adopted a slightly different approach and positioned the grid in the contraction part
of the wind tunnel. This technique is well established, and has been tested and shown
to give good homogeneity of the turbulence both in connection with the present
experiments and with experiments by e.g. Sjögren & Johansson (1996). The present
technique requires a somewhat larger contraction ratio to achieve isotropy and in the
experiments the area ratio for the part downstream of the grid was chosen as 1.6,

which resulted in a very low degree of anisotropy, u2
1/u

2
2 ≈ 1.02, as is shown in figure

3. The difference, compared to the value used by Comte-Bellot & Corrsin (1966),
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Figure 4. Downstream decay of kinetic energy The leading edge of the moving belt arrangement
is located at U0t/M = 14.3.

is related to the fact that the grid here is placed in the contraction and the strain
thereby acts during the generation process.

The error of u2
1 was found to be less than 1%. This value is based on repeated

measurements with different hot-wire probes. Using this approach the uncertainty of

u2
2 and u2

3 was found to be less than 2–3%.
The present experimental set-up was used with U∞ = 5 m s−1 in the following

experiments, and resulted in an integral scale, Lint ≈ 31 mm, and a Kolmogorov
microscale, η ≈ 0.6 mm, at the measuring position (η is obtained in the free stream
using the isotropic expression for ε. Hence, with a wire length of 1.08 mm (L/d = 216)
we have fulfilled the requirements discussed in §2.2.

In assessing the performance of the grid, it is customary to fit the grid turbulence
decay data with power laws over various periods of decay of the turbulence. Therefore,
following the example of Batchelor & Townsend (1948), we fit power laws for 1/k,
where k is the turbulent kinetic energy, k ≡ uiui/2, and Lint. Since the actual grid
location is irrelevant in the fully developed range, we use the empirical forms:

U2
o

k
= A1

(
Uot

M
− Uot

∗

M

)n1

, (3.1)

Lint = A2

(
Uot−Uot

∗)n2
, (3.2)

where Lint =
∫ ∞

0
u1(0)u1(x1)dx1/u

2
1.

Figure 4 shows a typical decay of turbulent kinetic energy as a function of Uot/M,
where U0 is the mean speed at the grid and t is the elapsed time calculated from
t =

∫
dx/U1(x1). The coefficients of (3.1) were determined by least-square fit to

the experimental data, and a comparison with the corresponding measurements of
Comte-Bellot & Corrsin (1966) is shown in table 1. As is evident from the table the
two experiments display very similar decay rates. The downstream development of
the ‘longitudinal’ integral scale is shown in figure 5. A best fit to the data is made after
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k-decay
Reference Uot

∗/M n1 A1

Present 3.2 1.27 18

u2
1-decay

Comte-Bellot & Corrsin (1966) 3 1.29 19
Present 3.2 1.26 27

Table 1. A comparison of the present energy decay rate of the grid turbulence to corresponding
data of Comte-Bellot & Corrsin (1966).

Uot (m)

0.06

0.04

0.02

0
1.2 1.4 1.6 1.8 2.0 2.2

Lint (m)

Figure 5. Downstream development of the integral scale.

prescribing a value of 0.50 for the exponent in (3.2) (see p. 73 in Tennekes & Lumley
1972). A lower value, n2 = 0.35, was found by Comte-Bellot & Corrsin (1966). The
fit seen in figure 5 is actually quite insensitive to the specific choice of the exponent.

As is evident from figure 3, the degree of Reynolds stress anisotropy is low.
However, since this measure is dominated by the large scales of the turbulence, it
may only be interpreted as an indication of the isotropy of the turbulence. A measure
of the degree of isotropy in the small scales is the ratio of the different components

forming ε. In figure 6, the ratio 2
(
∂u1/∂x1

)2
/(∂u1/∂x2)2, which for an isotropic flow

field should equal unity, is shown as a function of the distance from the wall. Close
to the wall there is a strong degree of anisotropy due to the action of the fluctuating
viscous shear near the wall. As is obvious from the no-slip condition, the numerator of
the above expression must approach zero at the wall while the denominator remains
finite. Hence, the ratio must tend to zero near the wall. As the distance from the wall
increases it approaches unity, indicating a shift towards isotropy in the small scales
of the free stream. This also indicates that the isotropic estimate of the dissipation
rate in the free stream should be approximately correct.

The value of the dissipation rate, ε, obtained as −U1∂k/∂x1 from the kinetic energy
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Figure 6. Distribution of the measure of isotropy as a function of the distance from the wall, at
the measuring position x/M = 16.2.
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Figure 7. Downstream development of the ratio between the isotropic estimate of the dissipation
rate and that obtained from the kinetic energy budget.

budget, can be compared with the isotropic estimate, εiso = 15ν
(
∂u1/∂x1

)2

, see e.g.

Tennekes & Lumley (1972). Figure 7 shows that the ratio of the isotropic estimate
of the dissipation and the value determined from the energy budget increases from
approximately 0.9 at the beginning of the test section towards unity as the downstream
distance increases. This indicates an approach towards an isotropic state. Also the
resolution of the small scales becomes slightly better with increasing downstream
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Figure 8. Mean velocity distribution at the measuring location x/M = 16.2.

distance (see Ewing & George 1994). Moreover, the diffusion is not accounted for in
this estimate, but should have a quite small influence here. For the present purposes
we may conclude that it is possible to obtain a reasonable resolution of the small
scales using the current measuring technique, and that the anisotropy in the free
stream seems to be low in the large as well as in the small scales.

4. Results and discussion
All measurements presented here were conducted at a mesh Reynolds number,

ReM = 1.6×104 (U∞ = 5m s−1). The turbulence Reynolds number, ReT (k2/νε), varies
from approximately 325 to 425 through the measuring section. All distances along
the moving belt are measured from the leading edge and scaled with the mesh width.
At the measuring position, x/M = 16.2, the turbulence Reynolds number is roughly
the same as the largest value studied by Perot & Moin (1995).

We will in the following discuss flow phenomena associated with the introduction
of a rigid surface into a homogeneous turbulent field, the flow development along the
moving belt and the turbulence field at the measuring position. Moreover, the terms
of the streamwise Reynolds stress transport equation are estimated, and a comparison
is made between the balanced streamwise pressure–strain rate term and some current
model predictions of this term.

4.1. Mean velocity and turbulence statistics

A flow without any mean flow inhomogeneities was accomplished as described in
§2.2, and a typical mean velocity profile at the measuring position is shown in figure
8. Throughout the region of interest, the variation was less than 1.0%. This was
considered to be satisfactory and hence, in the absence of a mean velocity gradient,
the production of turbulence was negligible along the moving belt.

The sudden change of boundary condition has an immediate effect on the turbulence
field. The data shown in figure 9, which were taken one integral scale downstream of
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Figure 9. Reynolds stress vs. wall distance at one integral scale downstream of the leading edge.
◦, α = 1; 2, α = 2; �, α = 3 (no summation over Greek indices). The solid lines are the predictions
of the Hunt & Graham theory.

the leading edge, show substantial influence on the intensities up to wall distances of
the order of one integral scale.

The problem of suddenly inserting a rigid boundary, moving with the stream speed,
in a turbulent flow field has been studied theoretically by Hunt & Graham (1978),
who proposed a method of accounting for the effects on the turbulence field. The
analysis is based on the linearized equations for the fluctuating velocity and vorticity,
so that a low level of turbulence intensity is assumed. Hunt & Graham (1978) describe
the effects of the wall on the flow field in terms of two distinctly different layers: a
viscously dominated region close to the wall and an inviscid region further out. The
neglect of viscous influence in the outer region will, however, be less accurate as the
distance travelled downstream increases because of accumulated effects of the viscous
stresses. One should keep in mind that there is no regeneration of turbulence in this
case. In the viscously dominated near-wall region the pressure terms were assumed
to be negligible.

The resulting equations were subsequently solved in spectral space, and the results
express the final spectra in terms of initial ones. Mean-square values of the fluctuating

components, u2
i , were calculated for two different initial spectra and the result for

the outer inviscid region shows that energy is transferred from the normal to the
tangential components, which show an increase as the wall is approached. A solution
for the near-wall region was also put forward by Hunt & Graham (1978). Since the
equations in this region have the typical form of a heat or diffusion equation an error
function will describe the velocity distributions, and the thickness of this layer will be
proportional to (νt)1/2. Moreover, in Hunt & Graham it is also stated that the theory
is applicable to the flow near a semi-infinite flat plate provided the displacement
thickness of the boundary layer on the plate is sufficiently thin.

In our experiment, the assumptions used by Hunt & Graham (1978) are fulfilled
in the region near the leading edge. A comparison of the present measurements
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with the theory is shown in figure 9 at a downstream distance of one integral scale.
Note that the two tangential components display the same behaviour, within the
experimental error, as was expected since the flow field should be axisymmetric,
i.e. isotropic in planes parallel to the wall. Another important feature is that after
this short downstream distance, the normal component of the Reynolds stress has
already been damped over a comparatively large normal distance, about one to
two integral scales, while the tangential components are affected only over less than
half an integral scale out from the wall. At this small distance from the leading
edge, the analysis of Hunt & Graham (1978) captures the essential behaviour of the
flow. However, further downstream the neglected terms of the governing equations
become of increasing importance. This implies that the influence of the viscosity must
be considered and one should expect an attenuation of the near-wall peak in the
tangential components.

The downstream development of the streamwise, R11/R11∞, and normal R22/R22∞,
Reynolds stresses is shown in figures 10(a) and 10(b), respectively. The solid lines
represent best-fit distributions at the respective positions. As is evident from the
figures, the distribution of the streamwise Reynolds stress goes through a dramatic
change, while the normal component is almost unaffected. Here, the wall distance is
normalized by the integral scale in the free stream. As would be expected from the
theory of Hunt & Graham the collapse of the curves for the streamwise Reynolds
stress for different x/M is significantly better in the near-wall region, although still
far from perfect, when the wall distance is normalized by (νt)1/2.

The initial near-wall peak in the streamwise Reynolds stress is caused by energy
transfer from the normal component into the tangential ones as an adjustment to
the rapid change in the boundary conditions as the turbulence passes over the solid
surface (cf. the Hunt & Graham theory). This peak, which is also found in the
spanwise Reynolds stress (see figure 9), rapidly decreases and has practically vanished
at the measuring position of x/M = 16.2 (corresponding to approximately 1.1 eddy-
turnover times). Noteworthy is also that the streamwise component is affected only
close to the wall, x2/Lint ≈ 0.2–0.3, while the normal component is influenced over a
much larger distance, of the order of 1–2 integral scales, from the wall. The latter
has essentially already been established in the initial adjustment to the new boundary
conditions.

Hence, we can identify two regimes in the development of the shear-free boundary
layer. The first region may be characterized as an adjustment regime of one to two
eddy-turnover times where the near-wall peak in the tangential components ‘rapidly’
decreases. The presence of the wall causes a shear in the tangential components
of the fluctuating velocity field and thus gives an enhanced viscous influence on
these components, which significantly contributes to the relaxation of the near-wall
peak. In the second regime the Reynolds stresses vary quite slowly with downstream
distance, and this can be at least partly understood from the fact that the intensities
and integral scale in the free stream exhibit only a slow variation with downstream
distance.

The observations are in agreement with the DNS results of Perot & Moin (1995),
who were able to study the turbulence at different Reynolds numbers for as long
as three eddy turnover times. Their temporally growing shear-free boundary layer
can be approximately related to the spatially growing shear-free boundary layer
studied here through the use of Taylor’s hypothesis. The position x/M = 16.2
translates to t/T = 16.2

(
M/U∞

)
/
(
Lint/(2k/3)1/2

)
≈ 1.1. In the simulations of

Perot & Moin (1995) a near-wall peak in the tangential Reynolds stresses was caused
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Figure 10. Downstream development of (a) the streamwise Reynolds stress and (b) the normal
Reynolds stress. ◦, x/M = 3.5; 2, x/M = 7.4; �, x/M = 16.2. Solid curves represent the best fit to
the respective data set.

by the suddenly imposed boundary condition on the initially isotropic turbulence.
For their largest Reynolds number it had practically vanished after roughly one
to two eddy turnover times, which is in accordance with the findings in figure
10(a). It is noteworthy that this experiment, the DNS of Perot & Moin (1995)
and the work of Uzkan & Reynolds (1967) do not indicate any near-wall peak
after a sufficient downstream distance/time. This is contradictory to the results
of Thomas & Hancock (1977), who found a persisting increase of the streamwise
Reynolds stress as the wall was approached. Moreover, they found that the peak
grew significantly with downstream distance.

The present results for the individual Reynolds stresses are compared in figure
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11(a–c) with the numerical results of Perot & Moin and the experimental results of
Thomas & Hancock at a downstream position corresponding to roughly one eddy-
turnover time. In this figure the symbols are used only to designate the different
data sets (and do not mark individual measurement points). In general there is quite
good agreement with the results of Perot & Moin whereas the data of Thomas &
Hancock show a considerable discrepancy for the R11 component. It is noteworthy
that their results for the R33 component exhibit only a weak near-wall peak that also
decreases in magnitude with downstream distance, in accordance with the present
results.

Possible influences of differences in Reynolds number have already been discussed
by Hunt & Graham (1978), but this cannot be considered to be a plausible cause for
the discrepancies between the Thomas & Hancock data and the present as well as the
DNS results. Perot & Moin (1995) suggest that the measured streamwise tangential
Reynolds stresses could have been contaminated by mean shear, despite the fact that
considerable efforts were made to try to eliminate the mean shear. However, a more
likely candidate for causing the near-wall peak in the streamwise Reynolds stress may
be the effects of frictional heating between the belt and the backing plate. In the
Thomas & Hancock experiments a temperature rise of 8◦C at the boundary was noted
during the measurements, while in our experiment the backing plate was water cooled,
with a maximum temperature variation of less than 1◦C. For hot-wire measurements in
this geometry the influence of frictional heating on the determination on the different
tangential turbulence intensities may be considerable. In order to check this effect, we
increased the temperature of our backing plate to about 10◦C above the wind-tunnel
temperature. Repeated experiments showed that this temperature increase resulted
in a significant increase of the streamwise Reynolds stress component as is shown
in figure 12 and may be explained in the following way. The square of the output
voltage, E, from the hot wire is proportional to the temperature difference between
the wire and the ambient air. Introduce θ = T − T∞, where T is the temperature
at the measuring position and T∞ is the ambient temperature at which the probe
was calibrated. Then let θ′ denote the turbulent fluctuation of θ and Θ denote the
time-averaged value, θ. A small change in the ambient temperature then gives rise to
a relative voltage change ∆E/E = − 1

2
θ/∆Tw , where ∆Tw is the overheat of the wire.

The form of King’s law, in turn, yields that the measured streamwise velocity u1m can
be written as

u1m = u1

(
1− c θ

∆Tw

)
. (4.1)

For high velocities, the constant c approaches the inverse of the exponent in King’s
law and is larger for lower velocities. One should expect values of c typically in the
range 3–4. It is obvious that an error is introduced if the temperature of the fluid is
different from T∞, and this can readily be shown to affect the measurements of mean
velocity and the turbulence component as follows (assuming that u′1θ

′ ≈ 0):

U1m

U1

= 1− c Θ

∆Tw
, (4.2)

(u′1m)2

(u′1)
2

= 1 + c2 U1
2

(u′1)
2

(θ′)2

∆T 2
w

− 2c
Θ

∆Tw
≈ 1 + c2 U1

2

(u′1)
2

(θ′)2

∆T 2
w

. (4.3)

This effect will not significantly affect the measurement of the other components
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Figure 11. Comparison of (a) R11, (b) R22 and (c) R33. Dashed curve, present results at x/M = 16.2.
Thomas & Hancock (1977): M, x/M = 18.2; O, x/M = 21.4. Perot & Moin (1995): •, t/T = 1.1.
(All distances from the leading edge.)
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Figure 12. Distributions of Reynolds stresses vs. wall distance: �, α = 1; 2, α = 3,
wall heated above ambient temperature.

since it can easily be shown that

u2m = u2

(
1− c θ

∆Tw

)
= u′2

(
1− cΘ + θ′

∆Tw

)
, (4.4)

(u′2m)2

(u′2)
2

= 1− 2c
Θ

∆Tw
, (4.5)

and similarly for the u3-component. This implies that the effect is negligible for the
normal and spanwise components and need only to be considered in the streamwise
Reynolds stress. Also Smits & Perry (1981) show that the effect of an increase in
temperature is negligible on the normal and spanwise turbulent components, whereas
the effects on the streamwise component is significant. Hence, in the measurements
of Thomas & Hancock (1977), see figure 11(c), the spanwise component displays a
similar behaviour to our data, while there is a significant difference in the streamwise
Reynolds stress component fully in accordance with the above analysis.

4.2. Terms in the streamwise Reynolds stress transport (RST) equation

The RST equations may be written in symbolic form as

DRij

Dt
= Pij − εij +Πij + dij . (4.6)

Here Rij ≡ uiuj; Pij ≡ −
(
uiukUj,k + ujukUj,k

)
is the production rate tensor, the

trace of which is responsible for the extraction of energy from the mean flow to
the fluctuations, and here is zero; εij ≡ 2νui,kuj,k is the homogeneous dissipation

rate tensor; Πij ≡
(
p/ρ
) (
ui,j + uj,i

)
is the pressure–strain rate tensor; and dij ≡[(

uipδjk + ujpδik
)
/ρ− ν

(
uiuj
)
,k

+ uiujuk

]
,k

is the transport or diffusion tensor. The

latter term contains contributions from pressure diffusion, viscous and turbulent
diffusion. Derivations of the RST equations can be found in most textbooks in the
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Figure 13. Terms in the streamwise RST equation as obtained from (a) the present experiments:
◦, advection; 2, dissipation; �, viscous diffusion; 4, turbulent diffusion; •, pressure–strain and
pressure diffusion and (b) Perot & Moin (1995) ◦, advection; 2, dissipation; �, viscous diffusion,
4, turbulent diffusion; H, pressure–strain; N, pressure diffusion.

field of turbulence (e.g. Tennekes & Lumley 1972 or Hinze 1975). For the present
application the pressure–strain rate term reduces to the so-called slow pressure–strain
rate since there is no mean velocity gradient.

The different terms of the streamwise component of the RST equation at x/M =
16.2 are shown in figure 13(a). Away from the wall, in the free stream, there
is an approximate balance between the dominating advection and the dissipation
terms, and this balance seems to prevail down to a wall distance of approximately
x2/Lint = 0.4. Actually, substantial deviations from this balance are restricted to
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the region x2/Lint < 0.2. As the wall is approached the pressure–strain and viscous-
diffusion terms become of increasing importance while the turbulent diffusion seems
to remain small. The advection term tends to zero as the wall is approached. At the
wall the dissipation and the viscous diffusion should balance according to the no-slip
condition and the continuity equation. This is, however, in a region too close to the
surface to be seen from the present measurements.

It is interesting to note that although the wall-normal component is attenuated
over a distance of the order of one integral length scale from the wall the active
redistribution through the action of the pressure–strain term is restricted to a much
thinner region. This is of importance for modelling purposes, in particular for the
description of the so-called wall pressure reflection term.

In the thin region where the pressure–strain term is significant, enhanced viscous
dissipation and diffusion also contribute to a quite complex scenario. The no-slip
condition at the wall gives an enhanced dissipation due to the fluctuating shear
components ∂u/∂y and ∂w/∂y. Close to the wall this effect dominates over the gain
from the pressure–strain redistribution in the streamwise and spanwise Reynolds stress
components. This situation is, of course, quite different to the case with an ‘inviscid’
(slip) wall, which also was studied by Perot & Moin. The enhanced dissipation caused
by the fluctuating shear in the horizontal velocity components also results in a highly
anisotropic dissipation, approaching a two-component state at the wall, i.e. ε22/ε→ 0
(the uncertainty in ε11 was estimated to be of the order of 15% based on repeated
measurements).

The fact that the pressure–strain rate is practically zero over a substantial region
where there is a significant Reynolds stress anisotropy implies that a traditional model
for this term, linear (as the Rotta model) or nonlinear, cannot be expected to work
without near-wall corrections in this region.

In figure 13(b) the DNS data of Perot & Moin (1995) are shown in the same scaling
as for the experimental data in figure 13(a). It is obvious that due to the physical
limitations of the measuring technique the innermost part of the boundary layer
cannot be resolved. However, in spite of this, a comparison with figure 13(a) shows
that all components in the RST equations seem to be very well resolved for x2/Lint
larger than 0.1. It is also noteworthy that in our measurements we have obtained the
pressure term by balancing the equations, and hence the pressure–strain and pressure
diffusion are not separated. From figure 13(b), it is obvious that the pressure diffusion
term is negligible, and the balanced term shown in figure 13(a) represents essentially
the pressure–strain rate term.

4.3. Implications for the near-wall modelling

The observation that the energy transfer between components is essentially zero
over a large part of the ‘boundary layer’ where the Reynolds stress anisotropy is
significant implies a need for near-wall corrections to the traditional models of the
slow pressure–strain rate term.

We illustrate the situation by use of the Rotta (1951) model for the slow part of the
pressure–strain rate term and as a typical model of wall proximity effects we employ
the Gibson & Launder (1978) model. The Rotta model

Π
(s)
ij = −c1ε

(
Rij

k
− 2

3
δij

)
(4.7)

predicts a return to isotropy at a rate influenced by the Rotta constant c1, usually
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Figure 14. Comparison between slow pressure–strain term inferred from measurements and
predicted: •, measurement; �, prediction; ×, Rotta contribution.

taken as 1.5–1.8. Here it is assumed that the ‘Rotta constant’ c1 varies with ReT as

c1 = cRf (ReT ) (4.8)

where cR = 0.8 and f (ReT ) is given by

f (ReT ) =
B

40π
ReT

((
1 +

80π

B2ReT

)1/2

− 1

)
(4.9)

where B = 0.31, Hallbäck, Sjögren & Johansson (1993). For the present Reynolds
number of about 425 this gives a Rotta constant of approximately 1.4. The Gibson
& Launder model

Π
(w)
ij = c′1

ε

k

(
ukumnknmδij − 3

2
ukuinknj − 3

2
ukujnkni

)
f

(
Lint

x2

)
(4.10)

which describes the wall damping effect, results in an enhancement of the anisotropy
near a wall, where the level of the normal component is decreased by the presence of
the wall. The function f is assumed to be directly proportional to Lint/x2, such that
f = 0.4k3/2/ε.

Figure 14 shows a comparison between the value inferred from measurements and
the predicted value of the pressure–strain correlation, as it appears in the streamwise
budget. Also shown is the contribution due to the Rotta term alone. The total
dissipation is here determined under the assumption of local axisymmetry. As can be

seen the predicted net contribution to u2
1 is minor while the measurements indicate a

significant contribution in the inner portion of the ‘boundary layer’. The absence of
a predicted contribution is a reflection of the two counteracting processes as the wall
is approached: on the one hand there is the Rotta model acting to reduce the degree
of anisotropy and on the other hand we have the Gibson & Launder model acting to
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increase the degree of anisotropy. The net result is that the two terms almost cancel
each other.

The present experimental results and the numerical simulation results of Perot
& Moin (1995) suggest that the strength of the near-wall influence is such as to
completely inhibit the pressure–strain redistribution that otherwise would occur over
a distance of the order of the integral scale, where the level of anisotropy would
indicate a flow of energy from the wall normal to the lateral components. This
damping behaviour would be in accordance with typical models of pressure–reflection
terms, but the situation is further complicated by the fact that a thinner region
exists close to the wall where the pressure–strain indeed transfers energy from the
‘energy-poor’ wall-normal component to the ‘energy-rich’ horizontal ones. Hence,
the pressure–strain term here tends to increase anisotropy, in contrast to the usual
intuitive picture of slow pressure–strain as an ‘isotropization term’. This latter part
of the damping behaviour is not captured by current models of pressure-reflection
effects.

5. Conclusions
Turbulence with a very small degree of anisotropy was generated by applying a

small amount of strain to grid-generated turbulence. Measurements of the variances
of gradients of fluctuating velocities indicate very small degrees of anisotropy in
the small scales as well. By passing this turbulence field over a wall moving at
the speed of the free stream we were able to generate a shear-free boundary layer,
enabling experimental investigation of wall–turbulence interaction in the absence of
mean shear and turbulence production. The initial response of the turbulence field
to the insertion of the moving wall was seen to be well described by the theory
of Hunt & Graham (1978). The initial transfer from the wall-normal component
gives rise to near-wall peaks in the tangential components. For larger downstream
distances the Hunt & Graham theory ceases to give an accurate description. In
its downstream development the flow field continues, as should be expected, to be
roughly axisymmetric with isotropy in planes parallel to the wall. As the downstream
distance increases, the initial peaks in the tangential components of Reynolds stress
are damped and after an adjustment period corresponding to one to two (macroscale)
eddy-turnover times the peaks vanish completely.

In the connection with the damping of the Reynolds stresses the presence of two
length scales is evident. This was further illustrated by estimating the different terms
of the streamwise RST equation at a station downstream of the initial adjustment
region. A complex picture evolves from these results where the near-wall influence
gives a damping of the wall-normal component and an inhibition of pressure–strain
redistribution over a region extending roughly one integral scale out from the wall.
This part of the near-wall influence could be considered to be in accordance with
current models of wall proximity effects, which typically assume a wall-distance
scaling on k3/2/ε. In a thinner region closest to the wall, though, a much more
complicated balance occurs where the pressure–strain actually transfers energy to
the horizontal components from the wall-normal one, thus tending to increase the
degree of anisotropy. This effect is obviously associated with the change in turbulence
structure caused by the presence of the wall, cf. the so-called splatting effect discussed
by Perot & Moin (1995). In this region one also finds an enhanced dissipation caused
by the fluctuating shear induced by the no-slip condition at the wall. This is also
associated with a transport of energy towards the wall.



384 D. Aronson, A. V. Johansson and L. Löfdahl

The near-wall influence in this inner region of the flow is probably quite difficult to
capture in one-point closures of standard form, and may require information further
to that of the Reynolds stresses, such as e.g. length-scale related quantities.
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